首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   150篇
  国内免费   20篇
  2024年   2篇
  2023年   4篇
  2022年   5篇
  2021年   4篇
  2020年   12篇
  2019年   5篇
  2018年   7篇
  2017年   20篇
  2016年   31篇
  2015年   25篇
  2014年   32篇
  2013年   24篇
  2012年   20篇
  2011年   19篇
  2010年   15篇
  2009年   32篇
  2008年   27篇
  2007年   26篇
  2006年   39篇
  2005年   25篇
  2004年   23篇
  2003年   15篇
  2002年   11篇
  2001年   18篇
  2000年   13篇
  1999年   9篇
  1998年   5篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   3篇
  1988年   1篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
51.
The nucleolus solution for cooperative games in characteristic function form is usually computed numerically by solving a sequence of linear programing (LP) problems, or by solving a single, but very large‐scale, LP problem. This article proposes an algebraic method to compute the nucleolus solution analytically (i.e., in closed‐form) for a three‐player cooperative game in characteristic function form. We first consider cooperative games with empty core and derive a formula to compute the nucleolus solution. Next, we examine cooperative games with nonempty core and calculate the nucleolus solution analytically for five possible cases arising from the relationship among the value functions of different coalitions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
52.
The “gold‐mining” decision problem is concerned with the efficient utilization of a delicate mining equipment working in a number of different mines. Richard Bellman was the first to consider this type of a problem. The solution found by Bellman for the finite‐horizon, continuous‐time version of the problem with two mines is not overly realistic since he assumed that fractional parts of the same mining equipment could be used in different mines and this fraction could change instantaneously. In this paper, we provide some extensions to this model in order to produce more operational and realistic solutions. Our first model is concerned with developing an operational policy where the equipment may be switched from one mine to the other at most once during a finite horizon. In the next extension we incorporate a cost component in the objective function and assume that the horizon length is not fixed but it is the second decision variable. Structural properties of the optimal solutions are obtained using nonlinear programming. Each model and its solution is illustrated with a numerical example. The models developed here may have potential applications in other areas including production of items requiring the same machine or choosing a sequence of activities requiring the same resource. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 186–203, 2002; DOI 10.1002/nav.10008  相似文献   
53.
We study a periodic-review assemble-to-order (ATO) system with multiple components and multiple products, in which the inventory replenishment for each component follows an independent base-stock policy and stochastic product demands are satisfied according to a First-Come-First-Served rule. We assume that the replenishment for various component suffers from lead time uncertainty. However, the decision maker has the so-called advance supply information (ASI) associated with the lead times and thus can take advantage of the information for system optimization. We propose a multistage stochastic integer program that incorporates ASI to address the joint optimization of inventory replenishment and component allocation. The optimal base-stock policy for the inventory replenishment is determined using the sample average approximation algorithm. Also, we provide a modified order-based component allocation (MOBCA) heuristic for the component allocation. We additionally consider a special case of the variable lead times where the resulting two-stage stochastic programming model can be characterized as a single-scenario case of the proposed multistage model. We carry out extensive computational studies to quantify the benefits of integrating ASI into joint optimization and to explore the possibility of employing the two-stage model as a relatively efficient approximation scheme for the multistage model.  相似文献   
54.
It is well‐known that the efficient set of a multiobjective linear programming (MOLP) problem can be represented as a union of the maximal efficient faces of the feasible region. In this paper, we propose a method for finding all maximal efficient faces for an MOLP. The new method is based on a condition that all efficient vertices (short for the efficient extreme points and rays) for the MOLP have been found and it relies on the adjacency, affine independence and convexity results of efficient sets. The method uses a local top‐down search strategy to determine maximal efficient faces incident to every efficient vertex for finding maximal efficient faces of an MOLP problem. To our knowledge, the proposed method is the first top‐down search method that uses the adjacency property of the efficient set to find all maximal efficient faces. We discuss this and other advantages and disadvantages of the algorithm. We also discuss some computational experience we have had with our computer code for implementing the algorithm. This computational experience involved solving several MOLP problems with the code.  相似文献   
55.
In this paper, we derive new families of facet‐defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem include two‐ and three‐slope facet‐defining inequalities as well as the first family of four‐slope facet‐defining inequalities. The new valid inequalities for the infinite group problem include families of two‐ and three‐slope extreme inequalities. These new inequalities not only illustrate the diversity of strong inequalities for the finite and infinite group problems, but also provide a large variety of new cutting planes for solving integer and mixed‐integer programming problems. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
56.
针对合成分队不同指挥层级之间的决策交互优化问题,提出了基于主从决策的双层武器目标分配模型。该模型能够体现上下指挥层级之间交互式决策协调优化的特点:上层目标为主攻方向我方遭受威胁最小,下层目标为对敌打击最大。结合合成分队作战决策的特点和要求,提出了一种求解该模型的改进型粒子群优化算法。仿真结果表明,该模型合理有效,改进的求解算法能够获得满意解。  相似文献   
57.
混沌理论在雷达中的应用   总被引:2,自引:0,他引:2  
混沌动力学作为一门新学科已经引起了世界各国科学界的重视,是近年来非线性科学领域的热门学科,混沌系统初值的敏感性和两个混沌系统间同步的实现,使得混沌用于保密通信成为可能,海杂波的混沌特性使人们开始探索混沌在雷达中的应用.研究表明,混沌在杂波分析与建模、信号检测、目标识别及伪随机码波形设计等领域内取得了可喜的成果.研究了混沌在雷达中的应用,分析了目前混沌在雷达中的应用现状,预测了未来研究发展的趋势.  相似文献   
58.
In this paper, a condition-based maintenance model for a multi-unit production system is proposed and analyzed using Markov renewal theory. The units of the system are subject to gradual deterioration, and the gradual deterioration process of each unit is described by a three-state continuous time homogeneous Markov chain with two working states and a failure state. The production rate of the system is influenced by the deterioration process and the demand is constant. The states of the units are observable through regular inspections and the decision to perform maintenance depends on the number of units in each state. The objective is to obtain the steady-state characteristics and the formula for the long-run average cost for the controlled system. The optimal policy is obtained using a dynamic programming algorithm. The result is validated using a semi-Markov decision process formulation and the policy iteration algorithm. Moreover, an analytical expression is obtained for the calculation of the mean time to initiate maintenance using the first passage time theory.  相似文献   
59.
采用非线性分析的方法,研究了一类非线性控制系统模型,得到解的整体存在性。  相似文献   
60.
We consider a make‐to‐order production–distribution system with one supplier and one or more customers. A set of orders with due dates needs to be processed by the supplier and delivered to the customers upon completion. The supplier can process one order at a time without preemption. Each customer is at a distinct location and only orders from the same customer can be batched together for delivery. Each delivery shipment has a capacity limit and incurs a distribution cost. The problem is to find a joint schedule of order processing at the supplier and order delivery from the supplier to the customers that optimizes an objective function involving the maximum delivery tardiness and the total distribution cost. We first study the solvability of various cases of the problem by either providing an efficient algorithm or proving the intractability of the problem. We then develop a fast heuristic for the general problem. We show that the heuristic is asymptotically optimal as the number of orders goes to infinity. We also evaluate the performance of the heuristic computationally by using lower bounds obtained by a column generation approach. Our results indicate that the heuristic is capable of generating near optimal solutions quickly. Finally, we study the value of production–distribution integration by comparing our integrated approach with two sequential approaches where scheduling decisions for order processing are made first, followed by order delivery decisions, with no or only partial integration of the two decisions. We show that in many cases, the integrated approach performs significantly better than the sequential approaches. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号